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ABSTRACT   Aberrant Observations (AOs) are observations that deviate significantly from the majority. They 

may be generated by a different mechanism corresponding to normal data and may be due to sensor 

noise, process disturbances, instrument degradation or human related errors. Otherwise, decisions on 

suspected aberrant observations might be inappropriate. In this paper, we present aberrant observations 

modeling approach based on wavelet analysis in Gaussian Normal Distribution (ND) and Non-Gaussian 

Distributions - Contaminated Normal Distribution (CND) and Laplace Distribution (LD). In order to 

characterize these distributions, a simulation of 508,1020 and 2040 data sets from normal distribution 

and contaminated with four, four and eight  aberrant observations while two real data University College 

Hospital Ibadan Diabetic Data (UCHDD) and Zadakat Data (ZD) from a local mosque in Ibadan of 128 

observations each were analyzed, since wavelet analysis is dyadic. The Mallat algorithm was used to 

reduce the sizes of the data into smaller resolutions while preserving the desired statistics. In the first 

three (simulated) series, it was observed that the CND has highest Akaike Information Criterion (AIC) 

estimates followed by ND and LD hence LD is the most efficient in modeling data in the presence of 

aberrant observations. From series A (UCHDD) and B (ZD) which are real datasets, the observations 

were the same as that of simulated datasets except that it was observed that the more the observations, 

the lower the LD are in modeling aberrant observations.  
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INTRODUCTION 

Wavelet development can be linked to several 

separate trains of thoughts. It started with Haar's 

work in the twentieth century. Notable contributions 

to wavelet theory can be attributed to Zweig's 

discovery of the continuous wavelet transform in 

1975 (originally called the Cochlear transform and 

discovered while studying the reaction of the ear to 

sound) (Chiann & Morettin, 1999): Pierre 

Goupillard, Grossmann and mortlet's formulation of 

what is now known as the continuous wavelet 

transform, (Antoniadis, 1997) early work on discrete 

wavelet. (Daubechies, 1988): Orthogonal wavelets 

with compact support (1988): Mallat's multi-

resolution framework (Mallat 1989a and b), 

(Daubechies, 1988), time-frequency interpretation 

of the continuous wavelet transform, (Gencay, 

Selcuk, & Whitcher, 2001): Hormonic wavelet 

transform and many others. Wavelet transform 

though very new, would appear to be very 

appropriate for analyzing non – stationery signals 

(Chui, 1999) and a link between wavelet and the 

difference operator was made in (Jewerth & 

Sweldens, 1994). Wavelets are mathematical tools 

used for analyzing time series which we take to be 

any sequence of observations associated with an 

ordered independent variable t which can assume 

either a discrete set of values or a continuum of 

value. Examples of both include time, depth, or 

distance along a line. Wavelets are a synthesis of 

older ideas with new elegant mathematical results 

and efficient computational algorithms. In some 

cases it complements the existing analysis 

techniques like correlation, and spectral analysis and 

capable of solving problems for which little progress 

had been made prior to the introduction of wavelets. 

Its application is now appearing each year and with 

the total number of over sixteen thousand articles 

being published to date in diverse field of study 

(Addison, 2004; Crowley, 2005). The theoretical 

underpinning of wavelet were completed in the late 

eighty’s, whereas the 1990’s witnessed a rapid 

increase in the number of different practical 

applications. These applied fields include (Nason & 

Von-Sachs, 1999), among others signal and image 

processing, data compression, astronomy, acoustics 

(scientific study of sound) partial differential 

equations optics, and nuclear physics. At the 

moment, they are entering mainstream 

Econometrics (Gencay, Selcuk, & Whitcher, 2001) 

with some applications in different fields of finance 

and economics (Ramsey, 2001). Wavelet based 

methods offer a viable alternative to the ubiquitous 

Fourier analysis (Walter & Shen, 2000). 
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There are two main waves of wavelets. The first 

known as continuous wavelet transform (CWT) 

designed to work with time series defined over the 

entire real line; the second is the Discrete Wavelet 

Transform (DWT) which deals with series defined 

essentially over a range of integers (usually t = 

0,1,……….N-1 where it denotes the number of 

values in the time series)   

There are varieties of wavelet and wavelet scaling 

functions but the most common ones are 

 1 Haar wavelet 

 2 Daubechies wavelet 

 3 Mayer wavelet 

 4 Shanon wavelet 

 5 Spline wavelet 

 6 Coiflets 

 7 Biorthogonal Wavelets 

 

For the purpose of this research work, we shall apply 

Haar Wavelet Transform. 

 

Advantages of Wavelet Analysis 

i. Wavelet analysis appears best suited to 

exploratory data analysis of complex, non-

stationary data which summarizes their 

main characteristics in easy-to-understand 

form of visual graphs without using a 

statistical model or having formulated a 

hypothesis proposed by John Turkey to 

encourage statisticians visually to examine 

their data set e.g. Box-plot (Dahlhaus, 

1997).   

ii. Statistically, wavelets can be viewed as 

non-parametric orthogonal series 

estimators with new elegant statistical 

results and efficient computational 

algorithms, (Burrus, Gopinath, & Guo, 

1997) that can effectively handle the 

discontinuities caused by different regime 

shift (characteristic conditions) that 

typically plague the economic and financial 

data.  

iii. They (non-stationary) are especially 

suitable to the comprehensive multi-

decision analysis of disaggregate (scaled) 

series; the process of data aggregation and 

concept of equispaced series do not play 

any fundamental role in the context of 

wavelet analysis. 

MATERIALS AND METHODS 

Five sets of data were used in the course of this 

research. Series W, X and Y are simulated datasets 

from normal distribution using R-Software while 

series A and B are real datasets. 

Series W: Simulated series (n=512) observations 

with four aberrant observations injected randomly. 

Series X: Simulated series (n=1024) observations 

with four aberrant observations injected randomly. 

Series Y: Simulated series (n=2048) observations 

with eight aberrant observations injected randomly. 

Series A: UCH Diabetic Data (n=128). 

Series B: Zadakat Data (n=128).  

Wavelet Parametric Approach  

We considered the Gaussian (ND) and Non – 

Gaussian Distributions. The Non –Gaussian 

distributions are LD and CND (when the Normal 

distribution is contaminated with aberrant 

observations). 

For Distribution with shape parameter, yet when it 

is not exponentially distributed, no simple closed 

form solution can be found. However, it is known 

that as long as the distribution of is not singular, p 

(I) must have a larger kurtosis value than Gaussian 

distribution i.e. it is fat tail. In fact, the larger the 

variance of the distribution, the greater the kurtosis 

value. To allow for shape values it is better to use a 

generalized Gaussian distribution, to model wavelet 

sub-band (at different resolution) coefficients. 

The generalized Gaussian distribution has the 

probability density function by J. Armando 

Dominguez Molona et al.,(2003).  
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The parameter  is the mean, the function 

( , )A    is a scaling factor which allows 

variance (X) = 
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 As   , the Gaussian Distribution 

approaches the uniform distribution.  

When 2  , the Generalized Gaussian 

Distribution becomes Gaussian 

Distribution.  

and  

 If 1  , the Generalised Gaussian 

Distribution becomes a Laplace 

Distribution.  

 Laplace Distribution  

Let the Probability density function (pdf) 

of Laplace distribution be given as: 

1

2(2 ) ( )1
( , , )
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The mean of the response variable is given as:  
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The variance of the response variable as:  
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Eq. (3) and Eq. (4) are required in wavelet analysis 

as location and scale parameters respectively.

  

 DATA ANALYSIS 

Table 1: AIC estimates of 512 observations with 4 AOs injected by resolution levels 

Resolution Levels (No 

of Observations) 

Uncontaminated 

Normal Dist. 

Contaminated Distributions 

Contaminated Normal 

Distribution 

Laplace 

Distribution 

9    (512 ) 1402.113 4677.203 1822.043 

8    (256 ) 748.4688 3868.213 998.632 

7    (128) 371.899 1736.954 536.7024 

6    ( 64 ) 187.5164 775.0375 288.5806 

5   ( 32 ) 97.5664 457.8793 156.8911 

    

 

Table 2: AIC estimates of 1024 observations with 4 AOs injected by resolution levels 

 Resolution Levels (No of 

Observations) 

Uncontaminated 

Normal Dist. 

Contaminated Distributions 

Cont. Normal Distribution 
Laplace 

Distribution 

10   (1024) 2874.0970 4818.2140 3317.6830 

9   (512) 1486.9720 2413.0950 1759.5760 

8     (256) 731.7840 1202.4400 924.6532 

7    (128 ) 361.2020 607.1812 484.7221 

6    (64) 175.4640 304.7123 248.7585 
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5     (32 ) 83.9990 150.5107 127.7655 

    

 

 

 

Table 3: AIC estimates of 2048 observations with 8 AOs injected by resolution levels 

Resolutions Level(No of 

Observations) 

Uncontaminated 

Normal Dist. 

Contaminated Distributions 

Cont. Normal Distribution 
Laplace 

Distribution 

11   (2048) 5758.3330 10557.1000 6824.0680 

10   (1024) 2980.4130 5280.9330 3640.4620 

9    (512) 1466.7610 2630.6690 1926.3770 

8     (256) 729.4609 1327.1120 1021.2780 

7    (128 ) 357.9632 1634.8270 532.7774 

6    (64) 173.4225 628.5099 279.1899 

5     (32 ) 92.9444 439.8291 154.1428 

    

    

Table 4: AOC estimates of UCHDD with 128 observations by resolution levels 

 

 Resolution Levels (No of 

 Observations) 

 

Contaminated 

Normal Distributions 

 

Laplace Distribution 

7 (128) 2157.1960 2143.276 

6 (64) 1140.9800 420.543 

5 (32) 518.1440 207.5651 

4 (16) 240.4674 100.0472 

 

Table 5: AIC estimates of ZD with 128 observations by resolution levels 

Resolutions Level(No of Observations) 
Contaminated 

Normal Dist. 
Laplace Distribution 

 

 

7 (128) 2319.0200 2435.2860  

6 (64) 1160.9090 862.9327  

5 (32) 535.7745 424.9759  

4 (16) 392.6204 188.4098  

    

RESULTS AND DISCUSSION  
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Table 1 shows the AIC estimates by resolution 

levels. It can be observed that LD has the lowest 

values which confirm that it is the best method of 

modeling aberrant observation among the three 

distributions. 

Table 2 are the AIC estimates obtained from the 

distributions. . It is also observed that LD has the 

lowest values which confirm that it is the best 

method of modeling aberrant observation among the 

three distributions.  

Table 3 shows the AIC estimates obtained from the 

distributions, it is observed that the LD has the 

lowest values which confirm that it is the best 

method of modeling aberrant observation among the 

three distributions.  

Table 4 just as in the standard deviation estimates, 

the AIC estimates of the, LD has the lower values in 

all resolutions which confirm that it is the better 

method of modeling aberrant observation among the 

two distributions. 

Table 5 just as in Table 4, it can be observed that LD 

has a lower in all resolution values which confirm 

that it is the best method of modeling aberrant 

observation among the two distributions. 

CONCLUSION 

In series  W,X and Y data sets 512,1024 and 2048  

were simulated  using Normal distribution, their  

mean, standard  deviation, likelihood and the Akaike  

Information Criterion estimates  were obtained at 

different resolution levels . The value so obtained 

from the mean, and standard deviation were 

approximately 0 and 1 respectively at each 

resolution level. Thereafter, 4, 4 and 8 aberrant 

observations were injected randomly into the series 

and their corresponding mean, standard deviation, 

likelihood and the Akaike Information Criterion 

estimates were obtained using CND, ND and LP. In 

the first three (simulated) series, which has aberrant 

observations injected, it was observed that the CND 

has higher values followed by ND and LD has  the 

least Akaike  Information Criterion estimates  hence 

is more efficient in modeling data in the presence of 

aberrant observations.  

From series A (UCH Diabetic datasets) and B 

(Zadakat datasets) which are real life data, the 

observations were the same as that of simulated data 

except that it was observed that the more the 

observations, the lower the Laplace Distribution is 

in modeling aberrant observations in real life 

datasets. 
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